Detection of Monomorphic Nodes in Large Graphs to Improve Privacy of Users in Online Social Networks

Hossein Shafiei

## What, Why and How

O What?

• What is (implicit/explicit)-data privacy in online social networks?

O Why?

• Why we should protect implicit-data privacy of users?

O How?

• How can we detect and protect vulnerable users?

## **Definition & Regulation on Privacy**

#### • European Union GDPR:

 Data privacy means empowering users to make their own decisions about who can process their data and for what purpose.

#### • California State CCPA:

 AB 375 allows any California consumer to demand to see all the information a company has saved on them, as well as a full list of all the third parties that data is shared with

## **Types of Privacy**

#### O Data Privacy

- O Personal
- O Social
- O Context Privacy
  - O Location Privacy
  - O Temporal Privacy
  - O Rate Privacy



## Data Privacy

#### • Scope:

- Personal: each individual's data (what is your name, what color is your car, ...)
- Social: data about ones social interactions (who are your friends, what are their jobs ,... )

### • Types of User Data:

- Explicit, such as names, ids, etc.
- Implicit, indirect data about user that collectively can divulge user's identity

## **Context Privacy**

- Temporal Privacy:
  - When an specific event related to user happens? (e.g., when do they usually tweet)
- Location Privacy:
  - Where an specific event related to user happens? (e.g., From which location a request is initiated)

### • Rate Privacy:

• At which rate user events occur

Ο ...

# It's a scary new world (1)

- O Driver identification
- With only few car sensors:
  - O Steering wheel
  - Gyroscope
- Using convolutional neural networks (CNNs)
  - Drivers identified with up to 85% precision



# It's a scary new world (2)

- Identification of Individuals based on their hourly cell phone traces
- Using Cellular antennas:
  - Only few spatio-temporal points are enough to uniquely identify 95% of the individuals



# It's a scary new world (3)

- Identification of masked users in online social networks
  - Political reasons
  - Commercial incentives
  - Ransomware attacks



## Privacy of Users in OSNs

- Exposed by your friends
  - "Tell me who your friends are and I'll tell you who are"
  - Typical approach would be to hide your sensitive friends
  - Even when users hide some of their friends, "links reconstruction attack" could be formed to predict user's hidden friends with high accuracy.



## Privacy of Users in OSNs

#### • Exposed by your interests

- Users may want to hide their interests, i.e., participated groups to improve their privacy
- It has been shown that even with hiding 50% of users interests, attacker could predict their other half of interest with accuracy up to 90%.



## Privacy of Users in OSNs

#### Identification by social trolls

- A **social troll** is someone who purposely says something controversial in order to get a rise out of other users
- Piecemeal gathering of implicit data (Piecemeal Attack)
- Fusion of those implicit data to identify users or their friends



### **Piecemeal Attack**



### **Piecemeal Attack**

#### • Examples from Farsi twitter



اسم مادربزرگ طرف ویولته. من یکیشون رقیه بوده یکیشون صغری.:))

Translate Tweet

9:49 PM · 7/19/20 · Twitter for Android

94 Retweets and comments 3,889 Likes



# Modeling using Graphs

- Attribute graph
  - Two kind of vertices: (1) users (2) attributes
  - There is an edge between two vertices  $a_1$  and  $u_1$  if  $u_1$  has the attribute  $a_1$
  - V | vertices and | E | edges
  - Maximum degree of attribute vertices ( $D_{u}$ )
  - $\circ$  Maximum degree of user vertices (D<sub>a</sub>)
  - $\circ$  neighboring set of the node  $\cup$  (A<sub>u</sub>)



## **Properties of Attribute graphs**

- Clustering coefficient is zero:
  - Lemma: Every cycle in an attribute graph has an even number of nodes. (Thus no triangles)
  - Clustering coefficient is the number of closed triplets (or 3 x triangles) over the total number of triplets
- O  $D_a << D_u$

## Attribute graphs

#### • Neighboring subsets:

- Lemma: If every 4-cycle that starts from  $U_x$  either passes through  $U_y$  or passes through attributes connected to  $U_x$ , then  $A_{Ux} \subseteq A_{uy}$
- For example,  $A_{U3} \subseteq A_{U1}$  and not the other way



## Monomorphism in Attribute Graphs

- Ux is monomorphic if there is no  $U_y$  such that  $A_{Uy} \subseteq A_{Ux}$
- There is a O(|V|<sup>3</sup>)algorithm to detect monomorphic vertices with O(|V|+|E|) storage requirements
- Such graph for Facebook has **10**<sup>12</sup> vertices



## **Detection Approaches**

- O Centralized
  - Not feasible for large graphs
- Streaming
  - Feeding the vertices and edges gradually to a computation unit
- O Massively Parallel
  - Existing approaches are not suitable due to zero clustering

# Streaming Approach

- Vertices are fed to a computing machine gradually
- The machine processes the input in a multi-pass manner
- The number of times that the machine linearly scans the memory is an important measure for the performance
- Vertex feed:
  - Randomized (using random walk)
  - Deterministic algorithm (BFS)
  - Approximation algorithm:
    - Weight probability based on number of common ancestors



## Streaming Approach

- Randomized (using random walk)
  - O(|V|) space in worst case with O( $\log^2 |v|$ ) passes
- Deterministic algorithm
  - $O(D_{u} \log |V|)$  passes with  $O(D_{u}^{2})$  space
- Approximation algorithm
  - O(D<sub>u</sub> log |V|) passes with O(D<sub>u</sub> log |V|) space with D<sub>a</sub> ratio

## **Massively Parallel Approach**

- The graph is distributed over trusted computation machines
- Machines communicate with each other using message passing or via memory sharing
- Two Types:
  - Vertex-centric: Iteratively execute an algorithm over vertices of a graph for a predefined number of times or until they converge to the desired properties.
  - O Edge-centric
- Existing approaches:
  - O Google's Pregel
  - Facebook's GraphLab

## Massively Parallel Approach

 None of the existing approaches perform well for attribute graph due to its clustering coefficient



### **Our MP Approach**

- User nodes are distributed into machines
- Each machine contains a node called the proxy node
- Each node performs a two-hop neighbor discovery using proxy node to communicate with each other
- After  $O(D_{\nu})$  iteration the algorithm converges
- T = inbound messages/all messages is an important performance metric

### **Our MP Approach**

### O Node distribution method highly impact T:

- O Randomized
  - O Lowest overhead
- Balanced Hash function (Synch)
  - Optimal with high overhead
- "Secretary Problem" online algorithm (Asynchronous)
  - Sub-optimal with low overhead (1/e probability)

### **Evaluation of Streaming Approach**



### **Evaluation of MP Approach**



# **Evaluation of MP Approach**

|          |                | M = 4 | M = 8 | M = 16 |
|----------|----------------|-------|-------|--------|
| GraphLab | Exec. Time (s) | 749   | 534   | 313    |
|          | Max. Mem. (GB) | 743   | 612   | 509    |
| Ours     | Exec. Time (s) | 107   | 88    | 59     |
|          | Max. Mem. (GB) | 340   | 229   | 159    |



