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O Whate

O Whatis (implicit/explicit)-data privacy in online social networks?
O Why?
O Why we should protect implicit-data privacy of userse

O How?¢

O How can we detect and protect vulnerable userse



O European Union GDPR:

O Data privacy means empowering users to make their own decisions about who can process their
data and for what purpose.

O California State CCPA:

O AB 375 dllows any California consumer to demand to see all the information a company has
saved on them, as well as a full list of all the third parties that data is shared with



We are here

O Data Privacy

O Personal

O Socidal

O Context Privacy Data Context
O Location Privacy
O Temporal Privacy

O Rate Privacy



O Scope:

O Personal: each individual's data (what is your name, what color is your car, ...)

O Social: data about ones social interactions (who are your friends, what are their jobs ,... )
O Types of User Data:

O Explicit, such as names, ids, etc.

O Implicit, indirect data about user that collectively can divulge user’s identity



O Temporal Privacy:

O When an specific event related to user happens? (e.g., when do they usually tweet)
O Location Privacy:
O Where an specific event related to user happens? (e.g., From which location a request is initiated)

O Rate Privacy:

O At which rate user events occur
O ...



It's a scary new world (1)
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It's a scary new world (2)

O ldentification of Individuals based on their hourly
cell phone traces

O Using Cellular antennas:

O Only few spatio-temporal points are enough to
uniquely identify 95% of the individuals




It's a scary new world (3)

ldentification of masked users in online social
networks

Political reasons
Commercial incentives

Ransomware attacks




O Exposed by your friends

O “Tell me who your friends are and I'll tell you who
are”

O Typical approach would be to hide your sensitive
friends

O Even when users hide some of their friends, “links
reconstruction attack” could be formed to predict
user's hidden friends with high accuracy.




O Exposed by your interests

O Users may want to hide their interests, i.e.,
participated groups to improve their privacy

O It has been shown that even with hiding 50% of users
interests, attacker could predict their other half of
interest with accuracy up to 90%.




Privacy of Users in OSNs

O ldentfification by social trolls

O A social troll is someone who purposely says
something controversial in order to get a rise out of
other users

O Piecemeal gathering of implicit data (Piecemeal
Attack)

O Fusion of those implicit data to identify users or their
friends




O Examples from Farsi twitter
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Translate Tweet
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Modeling using Graphs

O Attribute graph

O Two kind of vertices: (1) users (2) attributes

o O
@_ 7

O Thereis an edge between two verfices a; and
u; if u; has the attribute a;

‘ Attribute nodes
(Y ser noes

O |V |vertices and |E| edges

O Maximum degree of attribute vertices (D)

O Maximum degree of user vertices (Dy)

O neighboring set of the node u (A,)



O Clustering coefficient is zero:

O Lemma: Every cycle in an attribute graph has an even number of
nodes. (Thus no triangles)

O Clustering coefficient is the number of closed triplets (or 3 x
triangles) over the total number of triplets

O Dg<<Dy,



O Neighboring subsets:

O Lemma: If every 4-cycle that starts from U, either passes
through U, or passes through attributes connected fo U,,

then Aux € Ayy
O For example, Ay; € Ay and not the other way
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Monomorp

O Uxis monomorphic if there is no U, such that Ay, € Ay,

O Thereis a O( |V |3)algorithm to detect monomorphic
vertices with O( |V | +| E|) storage requirements

O Such graph for Facebook has 1012 vertices




O Centralized
O Not feasible for large graphs

O Streaming
O Feeding the vertices and edges gradually to a computation unit

O Massively Parallel

O Existing approaches are not suitable due to zero clustering



Streaming Approach

O Vertices are fed to a computing machine gradually
O The machine processes the input in a multi-pass manner

O The number of fimes that the machine linearly scans the
memory is an important measure for the performance

O Vertex feed:
O Randomized (using random walk)
O Deterministic algorithm (BFS)

O Approximation algorithm:

O Weight probability based on number of common ancestors
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O Randomized (using random walk)
O O(|V]) space in worst case with O(log?| v |) passes
O Deterministic algorithm
O O(Dylog |V ]) passes with O(D2) space
O  Approximation algorithm
O O(Dylog |V |) passes with O(Dylog |V |) space with D4 ratio
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O The graph is distributed over trusted computation machines

O Machines communicate with each other using message passing or via memory sharing
O Two Types:

O Vertex-centric: Iteratively execute an algorithm over vertices of a graph for a predefined number
of times or until they converge to the desired properties.

O Edge-centric
O Existing approaches:
O Google’s Pregel
O Facebook’s GraphLab



Massively Parallel Approach

None of the existing approaches perform well for attribute graph due to its clustering
coefficient




o O

@)

User nodes are distributed info machines

Each machine contains a node called the proxy node

Each node performs a two-hop neighbor discovery using proxy hode to communicate
with each other

After O(D,) iteration the algorithm converges

T = inbound messages/all messages is an important performance metric



O Node distribution method highly impact T:

O Randomized
O Lowest overhead

O Balanced Hash function (Synch)
O Optimal with high overhead

O “Secretary Problem” online algorithm (Asynchronous)
O Sub-optimal with low overhead (1/e probability)



Evaluation of Streaming Approach
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Evaluation of MP Approach
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Evaluation of MP Approach

M=4| M=8 | M=16
GraphLab Exec. Time (s) 749 534 313
Max. Mem. (GB) 743 612 509
Ours Exec. Time (s) 107 88 59
Max. Mem. (GB) 340 229 159




Any Question?




